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Abstract. The forecast of the decadal average sunspot number (SN) becomes possible with an 

extension of telescopic observations based on proxy reconstructions using the tree ring 

radiocarbon data during the Holocene. These decadal numbers (SNRC) provide a powerful statistic 

to verify the forecasting methods. Complicated dynamics of long-term solar activity and noise of 

proxy-based reconstruction make the one-step-ahead forecast to be challenging for any forecasting 

method. Here we construct a continuous dataset of SNRC which extends the group sunspot number 

and the international sunspot number. The known technique of non-linear forecast, the local linear 

approximation, is adapted to estimate the coming SN. Both the method and the continuous dataset 

were tested and tuned to obtain the minimum of a normalized average prediction error (E) during 

the last millennium using several past millennia as a training dataset. E = 0.58σD is achieved to 

forecast the SN successive differences whose standard deviation is σD =7.39 for the period of 

training. This corresponds to the correlation (r=0.97) between true and forecasted SN. This error is 

significantly smaller than the prediction error when the surrogate data were used for the training 

dataset, and proves the non-linearity in the decadal SN. The estimated coming SN is smaller than 

the previous one. 

Keywords: Solar activity, non-linear forecast, radiocarbon  

1. Introduction 

Solar activity forecasting is important for various scientific areas, mostly related 

to operations of low-Earth orbiting satellites, long-term forcing in climate models 

and geophysical applications. Many attempts were made to predict the future 

behavior of the coming solar cycle (see e.g. Kane (2007) for a brief review). 

Numerous prediction techniques have been developed to accurately predict the 

phase and amplitude of future solar cycles, but with limited success. The solar 

cycle is very difficult to predict due to noise contamination, high dispersion level 

and high variability both in phase and amplitude at different time-scales. The 

number of the observed 11-year solar cycles is too small to provide a statistical 

confidence for any predictive rule or theoretical model for the cycle-to-cycle 

variations. Another question is to forecast the envelope of 11-year cycles on the 

basis of the proxy data. A variety of solar activity reconstructions which are based 
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on different proxies such as historical observations of sunspots and aurora, the 
10Be content in polar ice, and the 14C content in tree rings (see e.g. Usoskin and 

Kovaltsov (2004) for a brief review) postulate independently the persistence of 

long-term variations, mostly of the Gleissberg and Suess cycles. These proxies are 

contaminated with noise but still provide some perspective to forecast the long-

term solar activity variations. Among these proxies, the 14C content in tree rings is 

the only global continuous dataset which is statistically useful, not only to build 

the forecast model but also to verify its result. Several attempts were made to 

extract the isotope production rates and respective long-term variations in solar 

activity from the 14C content in tree rings. Relatively short (period<400 years) 

variations agree well among different reconstructions when these reconstructions 

are scaled to the sunspot number via an appropriate semi-empirical (Stuiver and 

Quay,1980; Volobuev et al., 2004; Marchal, 2005; Ogurtsov, 2005) or theoretical 

(Solanki et al., 2004) models. Hereafter we call this sunspot number originating 

from the tree ring radiocarbon “SNRC”. The SNRC proxies provide a powerful 

statistic of decadal changes of the envelope of solar activity during the Holocene 

(more than 10000 years before present), but their long-term trend is uncertain 

mostly due to high uncertainties in the estimation of the dipole magnetic moment 

of the Earth (Muscheler et al., 2005). An attempt to forecast several forthcoming 

decadal averages of the group sunspot number on the basis of different SNRC 

proxies was made by Ogurtsov (2005), but the accuracy of the method proposed 

for the one-step-ahead forecast was below the level of inertial forecast (SNRC 

(t+1)= SNRC(t)). Another attempt by Clilverd et al. (2006) is based on the 

extrapolation of the Fourier components of SNRC. This approach cannot provide 

an excellent prediction of the non-linear time series like the sunspot number 

(Ostryakov and Usoskin, 1990; Sello, 2001) because the Fourier components 

represent a stochastic rather than a non-linear process. However, the non-linearity 

of the decadal sunspot number is not obvious and is one of the subjects of this 

investigation. The scope of the present investigation is the one-step-ahead forecast 

of the decadal numbers. The result of such forecast may be useful to forecast the 

size of the coming 11-year cycles with an appropriate model. Within this scope 

we address the following questions:  

• Is it possible to make a continuous composite “sunspot number” during the 

Holocene up to the present time?  



3 

• Can the noisy SNRC series predict the sunspot number based on telescopic 

observations? 

• Is it possible to produce the decadal sunspot number from a model of 

stochastic or non-linear process? 

These questions we try to answer with a computer experiment. We make  

statistical predictions using a non-linear forecast method and consider the 

normalized average prediction error (E) (defined in Section 3) for the step-by-step 

forecast as a criterion to incorporate the data into a continuous dataset, to adjust 

the method and to verify the hypotheses about the nature of the long-term 

variations. The paper is organized as follows: In Section 2 we build a continuous 

sunspot number from 9455 BC to the present. In Section 3 we describe the 

forecast method and in Section 4 we discuss the errors in data, errors of the 

forecast and provide the surrogate data test of non-linearity. Section 5 discusses 

the constraints to physical hypotheses about the nature of the long-term solar 

cycles.  

2. Continuous Composite Dataset 

The forecast requires a continuous dataset which we need to construct from three 

different time series (Table 1).  

Table 1 Components of the composite continuous dataset  

Dataset Period [years] Transform Web source 

SNRC (Solanki et al., 

2004) 

9455BC—1895AD SNRC+7.6 http://gcmd.nasa.gov/records/GCMD_NO

AA_NCDC_PALEO_2005-015.html

GSN (Hoyt and 

Schatten, 1996) 

1885—1995 AD <GSN>10 http://www.ngdc.noaa.gov/stp/SOLAR/ftp

sunspotnumber.html

ISN 1996—2006 AD < ISN>10 http://solarscience.msfc.nasa.gov/greenwc

h/spot_num.txt

 

The historical period 9455BC—1895AD is covered with SNRC dataset. The stop 

point of SNRC is 1895 because the Suess effect (a sudden growth of atmospheric 

CO2 content which has continued up to the present) started there which is difficult 

to take into account. The period of intersection (1610—1895) was studied in 

detail by Solanki et al. (2004). During this period our composite continuous 

dataset is based on SNRC because this period is the most recent and most accurate 

period in SNRC, whereas GSN may not be so accurate because regular Greenwich 

http://gcmd.nasa.gov/records/GCMD_NOAA_NCDC_PALEO_2005-015.html
http://gcmd.nasa.gov/records/GCMD_NOAA_NCDC_PALEO_2005-015.html
http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html
http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html
http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt
http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt


observations started in 1848 only. SNRC is shifted up in amplitude by 7.6 to make 

its ending points at 1885 and 1895 equal to the corresponding points in GSN 

(Figure 1). This shifting up helps us to remove the negative values which were in 

SNRC during the deep solar activity minima (e.g. Spörer and Maunder minima, 

Figure 3) because these values are false by the definition of the sunspot number. It 

also provides a continuity condition for the composite dataset and its derivative 

which is strongly required by our forecast method. This shifting up is consistent 

with the finding by Muscheler et al. (2007) that the 20-th century maximum of 

solar activity is not so exceptional as it was stated by Solanki et al. (2004) and the 

average level of solar activity during the Holocene might have been somewhat 

higher. The method itself also provides a statistical result which verifies the 

structure of the composite dataset. Namely the prediction error of GSN since 1895 

increases considerably if the continuity condition is not satisfied or the average 

value is used instead of the continuation during the period of intersection. The 

recent part of the composite dataset is the GSN which is smoothed by an 

appropriate smoothing spline to maximize the correlation with SNRC during the 

period (1610 - 1895) of SNRC and GSN intersection. The GSN dataset was 

connected to the international sunspot number (ISN) during the period (1995- 

2007). GSN is very close to ISN for the cycles of moderate amplitude as cycle 23, 

but not for other cycles (Nagovitsyn, 2005). Hereafter we introduce the notation 

of composite data set for the decadal averaged continuous data set {SNRC, GSN, 

ISN}. The smoothing spline was used to adjust the GSN smoothness to SNRC.It is 

a commonly used algorithm of data approximation (e.g. Fortran subroutine 

CUBSPL or MatLab Spline Toolbox function CSAPS). It minimizes the weighted 

sum 2 2 2( ) (1 ) ( ( ))i ip y S p D S t d− + −∑ ∫ t  of errors between the data (y) and the 

spline fitting (S) and the norm of the second derivative of the spline ( 2 ( )D S t ) 

Here p is a smoothing parameter in the form of p= 1/(1+h3/a) , and the sampling 

rate h=10 years. We found that parameter a =0.6 maximizes the correlation during 

the period of intersection. Although the result of the forecast is not very sensitive 

to the degree of smoothing, some consideration is due here. Over-smoothed data 

can be predicted more easily but are not so interesting. Namely a=0.01 leads to 

the loss of the gap in decadal GSN at 1975 but decreases the average prediction 

error E from 0.58σD to 0.53σD; here σD is the standard deviation of the successive 

differences in decadal numbers for the training period (see Sections 3, 4). In the 
4 



case of less smoothing with a=6, the error increases to E= 0.81σD. Nevertheless, 

this case closely reproduces the decadal average sunspot number (Figure 1). The 

SNRC data look more smooth, partly because some smoothing has been introduced 

by INTCAL98 which was constructed as an average of regional datasets with their 

errors (Reimer, 2004), and partly due to physical ocean smoothing (reservoir 

effect) which may not have been completely removed by the model (Solanki et 

al., 2004). Even with this selection of a=6, the coming decadal number is also 

predicted smaller as in the case of a=0.6. The last three spline-averaged points 

deviate significantly from the decadal average (Figure 1), mostly due to non-

Gaussian distribution of the annual numbers. The deviations are much smaller if 

we compare the values of yearly differences, so that the differentiation operation 

provides the stability of the forecast results (Section 3). 
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Figure 1. The composite data set. The curve ‘Smoothing spline, a=0.6’ best fits the SNRC data. 

The curve ‘Smoothing spline, a=6’ best reproduces the SN decadal average which is the annual 

group sunspot number averaged during the decade. The last point is estimated from the incomplete 

decade. 
  

We have three time series to describe the dynamics of solar activity during 

9455BC—2005AD in the over-decadal time scales. These data have been 

produced from various sources, so that they have different levels of the noise 

contamination and physical structure of their errors. Strictly speaking, each time 

series should be considered as a separate index of solar activity. We will, 

however, construct a composite (synthetic) series by introducing some formal 

criteria for the continuation of data. How can one be sure if any physics is 

preserved under this heterogeneous time series? We suppose that the answer could 
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be provided with the investigation of the predictability of this time series. Namely 

if we can obtain an adequate prediction error, we may conclude that this synthetic 

series preserves the level of determinism, i.e. it may be regarded as an observable 

of some hypothetical continuous dynamical process.  

3. Method and Results 

The method of the local linear (LL) approximation in the phase-space first 

proposed by Farmer and Sidorowich (1987) was used to forecast our composite 

time series. The hypothesis in the background is that the low-dimensionality chaos 

(non-linearity) is present in the long-term solar activity variations or that they can 

be described with some model system of several non-liner ordinary differential 

equations (ODEs). This model system can be derived as a truncation of the mean 

field dynamo equations (Weiss, 1985) or a disc dynamo (Volobuev, 2006) or 

dipole-quadrupole interaction dynamo (Knobloch and Landsberg, 1996). The 

hypothesis of the non-linearity model can be verified with the success of the LL-

method to predict a time series (Farmer and Sidorowich, 1987) because the 

construction of the method assumes its ability to predict also a stochastic time 

series. The LL-method has originated from the famous method of “analogs” by 

Lorenz (1969). Edward Lorenz is mostly known for his research on the chaotic 

system of non-linear ODEs which describes the appearance of chaotic regimes in 

the atmosphere mixing. "Lorenz analogs" are recurrent durations in the evolution 

of a time series. A sudden appearance of an analog in the chaotic time series can 

be explained by the preserved shape of a chaotic attractor in the phase space. In 

the phase space the analog is a nearest point (a neighbor) from the closest phase 

trajectory, and the dimension of the phase space corresponds to the length of the 

analog. The closer is the analog the better is the forecast.  

An interesting paradox is that the Lyapunov time is often about the length of one 

quasi-cycle (a pseudo-period) of the chaotic system, whereas the nearest analog 

may appear after 104 quasi-cycles or more. Therefore, in order to find a good 

analog for short-term weather forecast, the span of available data (the so-called 

‘ libraries’) which is10-100 years is considered “rather short” (Nicolis, 1998). So, 

despite quick memory loss and the fundamental constraint for the predictability 

horizon, noise-free chaotic systems have no restriction for the recurrence time of 

the analog, and therefore a longer library is preferable for a better prediction of a 



time series. Farmer and Sidorowich (1987) improved this approach with local 

(within analogs) linear regression and generalized it with the Takens-Packard 

procedure of the phase-space reconstruction (Packard et al., 1980). 

We will make several improvements of the LL-method when applying it to predict 

the composite time series. First of all, successive differences Dk=Ck-Ck-1 instead of 

amplitudes Ck themselves of the composite dataset will be forecasted. The 

procedure of the differentiation significantly reduces the amplitude of the long-

term variation (Figures 3, 4) which is questionable in the SNRC proxy due to high 

uncertainty in the geomagnetic dipole moment (Muscheler et al., 2005) and other 

significant systematic errors (Section 4). This procedure also helps us to reduce 

the inertial component (i.e. a trivial forecast when Ck =Ck-1) which is problematic 

because of the high one-step autocorrelation r(Ck-1,Ck)=0.9. As a result the 

autocorrelation r (Dk-1, Dk)=0.5 is much smaller. The second improvement is that 

we will adopt one-step delay (τ=1) that maximizes the library of the historical 

analogs, the minimum dimension of the reconstructed phase space (m=3), and 

minimum number of analogs to be found (Na=m+1). Apart from that we will 

avoid the multiple usage of the same data points, which is often the feature of the 

delay embeddings. The reconstructed phase space is: 

D1,D4,D7…,D[N/m]-m+1

  D = D2,D5,D8…,D[N/m]-m+2   (1) 

D3,D6,D9…,D[N/m] 
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Figure 2. Variation of the prediction error with the embedding dimension. 
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There indices Di are numbered from the present to the past, square brackets mean 

the round part, columns are vectors in the phase space (the library of analogs), N 

is the total length of the training set. Dimension m = 3 (Figure 2) was chosen here 

to minimize the prediction error. We tested dimensions m=2—20 and found that 

m=3 provides the best accuracy of the forecast. This is inconsistent with a 

theoretical consideration, namely, if the length of the time series is infinite and 

data error is close to zero, we should expect a reduction in the prediction error for 

higher embedding dimensions and stabilization of the error at the constant level 

when the true dimension is achieved. On the contrary, Figure 2 shows only one 

point (dimension 3) of this tendency but significant increase in the error at higher 

dimensions which is caused by the limited length of the time series and noise 

contamination which leads to the smaller number of perfect analogs at higher 

dimensions.  

Nearest neighbors (Lorenz analogs) A are the columns in Equation (1) which are 

closest to the first one in the sense of the squared Euclidean distance. They form a 

matrix similar to the matrix (1) with an additional upper row X for the prediction. 

A constrained linear least square problem should be solved to find the vector of 

regression coefficients g: 

Atg=Xt   (2) 

-σ < gi < σ 

8 

D 0

Here σ is the standard deviation of D, t is the transpose operator. Now we can find 

the quantity  and 
10

0
1

i i
i

D g
=

= ∑ 0 1C C D= +  which is the forecast of the 

derivative and the composite data themselves, respectively1. The one-step-ahead 

forecast of the composite data is evaluated during the last millennium (Figure 3).  

The correlation between actual Ca and forecasted C0 is extremely high for a step-

by-step forecast (see the inset in Figure 3), but this is partially due to slow 

changes of Ca (high contribution of the inertial forecast). More informative is the 

correlation between the actual Da and forecasted D0 of successive differences 

(r=0.74) which is significant for 100 independent points.  

 

 

                                                 
1  MatLab scripts for the method can be found at 

http://www.mathworks.com/matlabcentral/fileexchange/ , File Id 17276. 

http://www.mathworks.com/matlabcentral/fileexchange/
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Figure 3. Continued envelope of sunspot number and its 10-year-ahead forecast for the last 

millennium. Here SNRC means the sunspot number derived from tree ring radiocarbon content by 

Solanki et al. (2004). The composite data after the vertical thick line shows the group sunspot 

numbers (GSN), smoothed and 10-year sampled to provide the best correlation with SNRC. The 

composite data before the vertical thick line shows SNRC shifted up to provide the continuity of the 

composite at the point of the vertical line. ‘Forecast’ means the 10-year-ahead forecast of the 

composite data; each predicted point is allowed to use all points before it back to 9455 BC. The 

inset shows a scatter plot between actual and forecasted decadal means, and the diagonal line. 

 

Following Farmer and Sidorowich (1987) we compute the root-mean-square error 

 during the test period, normalize it by the standard 

deviation of the difference series  during the 

period 9455BC—1005AD and calculate the normalized prediction error 

2 1/ 2
0[ ( ) ( )]aC t C tσΔ =< − > test

2 1/ 2
training[ ( ) ( ) ]D D t D tσ =< − < > >

/ DE σ σΔ= . Here < > means the time average, σD=7.39 is a constant in our 

calculations to make the results of different predictions equally scaled. The 

normalized prediction error E is the main criterion which we use in this work to 

estimate the accuracy of various predictions; this is the most common criterion 

which is widely used in the forecast practice. If E=0 the prediction is perfect, E=1 

indicates that the performance is no better than a constant predictor 
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t0 test training( ) ( ) consD t D t=< > ≡ . Constant predictor obviously is very close to zero 

for the difference of large enough but constrained training dataset 

 which corresponds to the inertial forecast Ctraining( ) 0D t< > = 0(t)≡Ca(t-1) for the 

amplitude of the decadal sunspot number. 
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Figure 4. Variation of prediction accuracy with progressive removal of points from the training 

set. The curve labeled ‘Composite’ is the same as in Figure 2; ‘Finite Difference’ shows the 

successive differences of the composite data series; ‘Prediction Error’ is the normalized prediction 

error averaged during the test period (after vertical line); ‘Correlation’ is the correlation between 

actual and predicted successive differences.  

 

From the theoretical consideration by Farmer and Sidorowich (1987) we should 

expect the power-law variation of the prediction error E as a function of the 

number of data points N; the prediction error decreases with the increase of the 

length of the training set. On the contrary, this decrease in E is limited by the 

growth in the noise amplitude in the past. The confrontation between these two 

tendencies leads to the stabilization of the error at 7000-8000 BC, Figure 4, 

bottom panel. This leads also to the conclusion that the accuracy of the prediction 

now is limited by the errors in data, not by the length of the SNRC time series. So 



an increase in the accuracy of the radiocarbon calibration curve in future may lead 

to an increase in the accuracy of this solar activity prediction method. 

4. Errors in Data and Prediction Error 

The prediction error consists of errors in the data and in the prediction method or 

model. The total average error of SNRC reported by Solanki et al. (2004) is 

somewhat greater than the standard deviation σD of the SNRC difference series 

during the training period. The coming decadal value seems to be unpredictable 

because it is inside the error of the previous value. However, the reported error is 

mostly the systematic (long-term) error and can be reduced significantly after the 

differentiation procedure (Section 3). The total error is defined by Solanki et al. 

(2004) as follows: 

2 2 2 2 2
0 14 GEO CR OF NLm Cτσ σ σ σ σ σ= Δ + Δ + + + + +     (3) 

We summarize various sources of the total error in Table 2. 

Table 2 Sources of total SNRC error. 

Error Average 

value, SN 

Description Systematic

/short term 

Δm 2-10 Uncertainties in the pre-Holocene 14C production rate Systematic 

Δτ 1.2 Conversion of open magnetic flux into sunspot number Systematic 

σ14C 4.3 Δ14C measurement errors Short term 

σGEO 5.6 Uncertainties in the geomagnetic dipole moment Systematic 

σCR 4.6 Conversion of 14C production rate into cosmic ray flux Systematic 

σOF  0.5 Conversion of cosmic-ray flux into open magnetic flux Systematic 

σNL 2 Non-linear model for computing the open flux from the 

SN 

Systematic 

 

 

If we use the procedure of differentiation (Section 3) to remove the systematic 

errors, the principal source of error in the difference series turned out to be due to 

Δ14C measurement error, which is approximately 30% of total error. Δ14C 

measurement errors are from INTCAL98 (Stuiver et al., 1998) errors. These 

errors are mostly non-systematic, but they may be overestimated during their 

conversion to SNRC errors. INTCAL98 was constructed by taking an average of 

all data binned inside of each 10- year window. Sub-decadal measurements, e.g. 
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measurements of annual one-ring or semi-decadal five-ring samples were treated 

as if they were decadal (Reimer et al., 2004). This procedure may lead to over-

estimation of 5 - 10 times of the error in SNRC due to significant contribution from 

the regular 11-year solar activity variation to this error estimation. We summarize 

that the error in the SNRC difference series may be only a few percent of the total 

error reported for the decadal data because of two reasons: 

• Differentiation removes the systematic errors  

• SNRC errors may be overestimated because sub-decadal measurements 

were treated as if they were decadal 

Unfortunately it is impossible to quantify the remaining percent of error (the true 

error in the difference series) which would influence our prediction method from 

the consideration of the data error only. This approach would require too many 

details about the error evolution of all sources of data (Table 2) which are 

involved in the calculations of SNRC. A brief summary is that it is much smaller 

than the reported total error.  

The question arises, how to estimate the true error of the SNRC difference series? 

We calculate the prediction error during the test period as a function of the 

variable data error in the training set using the Monte-Carlo approach. We 

construct a number of synthetic series Yi(t) during the training period, so that:  

12 

iRC 0( ) ( ) ( )iY t SN t N tα σ= +      (4) 

where Ni are vectors of random numbers from a normal distribution with unit 

variance, α is a regulator of noise amplitude, e.g. α=0.5 simulates the series Yi (t) 

where noise amplitude is equivalent to 50% of reported total error. From each 

series we calculate the corresponding one-step-ahead forecast of 100 points of the 

test series and its prediction error Ei with the method of Section 3. Then Ei are 

averaged after 20 random runs with the fixed parameter α.  

These average values as a function of α are shown in Figure 5. We should expect 

that, at some small α the decrease in the prediction error will stop and this α will 

show the true error of the data. However, as a matter of fact we can see only some 

smoother decrease in α<0.02 (2% of total error). The asymptote of 

unpredictability E=1 with 50-100% noise added is consistent with σD=7.39 which 



is 67% of the reported error <σ0>=11. 
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Figure 5. Variation of the prediction error with noise added to the training set.  The abscissa is 

the Gaussian noise added to the training set relative to the error bars calculated by Solanki et al. 

(2004). 

 

The LL forecast method can also help to test the non-linearity of time series 

(Kantz and Schreiber, 2004) using the surrogate data approach. This non-linearity 

test serves to distinguish between the stochastic (autoregressive moving average - 

ARMA) process and low-dimensionality chaos via the calculation of the 

prediction error. The time series is termed non-linear if the test set is predicted 

significantly better when the training is made on the actual time series compared 

with the training on its surrogate data which simulate multiple realizations of a 

stochastic process. First, we assume the null hypothesis of a monotonically 

rescaled Gaussian linear stochastic process. Next we need surrogates with a given 

distribution and given linear correlations which are similar to that in our 

composite data. This is approximately achieved by the amplitude-adjusted Fourier 

transform (AAFT) algorithm. The Fourier transform of the data is multiplied by 

random phases and then transformed back, conserving the sample periodogram, 

see e.g. Kugiumtzis (2000). Here we use the realization of AAFT provided by 

Barnett and Wolff (2005) to produce the surrogate data from the training set2. The 

prediction error is averaged during the test period for each of 100 randomized 

training sets.  

                                                 
2 The algorithm is available at http://www.mathworks.com/matlabcentral/fileexchange/ , File Id 

16062. 

13 

http://www.mathworks.com/matlabcentral/fileexchange/


0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0

5

10

15

20

25

30

95%

68%

P
er

ce
nt

 / 
bi

n

Prediction Error

 Surrogate data

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0

5

10

15

20

25

30

 1% noise
 5% noise

 
Figure 6. The non-linearity test. The ‘% Noise’-histogram shows the distribution of prediction 

error over 100 random runs with noise of corresponding amplitude is added to the training set. The 

‘Surrogate data’-histogram shows the distribution of prediction error over 100 random runs of 

AAFT algorithm to randomize the learn set. The vertical solid and dashed lines show 95% and 

68% intervals, respectively, for the distribution of the prediction error with the surrogate data. 
 

The histogram (Figure 6) shows a broad distribution with average 0.83 which is 

significantly smaller than expected for pure random (Gaussian) processes which 

are unpredictable (average error not smaller than 1). The histogram deviates 

significantly from the histogram of the prediction error for the composite 

difference series if the noise amplitude does not exceed 1% of total error, i.e. the 

hypothesis of non-linearity is strongly supported for this level of error in the data. 

The non-linearity hypothesis is still significant for 5% error in the data (Figure 6). 

For a higher level of the noise the non-linearity cannot be proven with this 

method.  

5. Discussion 

In this investigation we developed the “state of the art” prediction technique on 

the basis of the local linear approximation method. The main result is the 

statistical evidence that step-by-step changes of decadal SNRC contain enough 

information to predict step-by-step changes of corresponding decadal numbers 

derived from the telescopic observations, despite these changes are within the 
14 
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error reported by Solanki et al. (2004). Assuming that the true error in SNRC 

difference series is small enough we can also prove the non-linearity of the 

decadal changes of sunspot numbers. These results are mathematically defined 

and statistically quantified but they have several interesting consequences for 

understanding of the physics under the long-term variations of solar activity and 

need an additional discussion.  

Currently there are several hypotheses of how the secular variation of solar 

activity (Gleissberg cycle) is originated. Random fluctuation or “eruptive” 

hypothesis, with “memory” not exceeding the length of the 11-year cycle was 

started by Waldmeier. Assuming this hypothesis we should have the normalized 

prediction error E=1 for any statistical method, so that our calculations do not 

support this hypothesis. The random number generator which was included in the 

Babcock-Leighton scheme to modulate the cycles is not supported either, because 

we should have found no “analogs” in the historical record and would have 

obtained E=1 with the LL-method. Also a sum of the hypothetical periodical 

processes with noise contamination should be rejected as a candidate to describe 

the long-term variation, as it was shown by the non-linearity test. Our calculations 

are consistent with chaotic modulation that appeared as an envelope of the 11-year 

cycle produced by some deterministic chaotic system (Weiss, 1985), or with a 

hypothesis of torsion oscillations which produces the long-term cycles 

(Kitchatinov et al., 1999) by non-linearity (Volobuev, 2006).  

Another question to be asked is: why the LL-method was used? The LL-method 

continues to be one of the most powerful methods for the statistical forecast. A 

similar method was used by Sello (2001) to forecast the smoothed monthly 

sunspot number. The accuracy of the method is much higher if it is compared with 

the approach by Ogurtsov (2005) and probably higher than the accuracy that can 

be achieved in the approach by Clilverd et al. (2006) which is simulated with our 

surrogate data test. It cannot be compared with a traditional method, e.g. with the 

“precursor” method, because a very limited length (1-5 cycles) was available for 

these methods to be tested. Obviously, any other non-linear method can be used to 

forecast the difference series of synthetic composite data. The prediction error 

may be better if some techniques based on the artificial intelligence are applied. 

The LL-method, however, is often included in these techniques and our 

specifications may help to adjust them. On the other hand, the non-linear LL-
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method helps us to understand the physics of the long-term variations of solar 

activity. 

 

Conclusions 

The method of local linear approximation has been adapted to forecast the coming 

decadal value of sunspot number. We conclude that: 

• The coming decadal sunspot number is predictable with the use of the 

radiocarbon-based sunspot numbers  

• Most likely, the decadal sunspot number reflects a non-linear process, not 

a stochastic process 

• The next decadal sunspot number will not be higher than the previous one.  
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